14 research outputs found

    A dynamic scale-space paradigm

    No full text
    We present a novel mathematical, physical and logical framework for describing an input image of the dynamics of physical fields, in particular the optic field dynamics. Our framework is required to be invariant under a particular gauge group, i.e., a group or set of transformations consistent with the symmetries of that physical field dynamics enveloping renormalisation groups. It has to yield a most concise field description in terms of a complete and irreducible set of equivalences or invariants. Furthermore, it should be robust to noise, i.e.,unresolvable perturbations (morphisms) of the physical field dynamics present below a specific dynamic scale,possibly not covered by the gauge group, do not affect Lyapunov or structural stability measures expressed inequivalences above that dynamic scale. The related dynamic scale symmetry encompasses then a gauge invariant similarity operator with which similarly prepared ensembles of physical field dynamics are probed and searched for partial equivalences coming about at higher scales

    Linear scale-space theory from physical principles

    No full text
    In the past decades linear scale-space theory was derived on the basis of various axiomatics. In this paper we revisit these axioms and show that they merely coincide with the following physical principles, namely that the image domain is a Galilean space, that the total energy exchange between a region and its surrounding is preserved under linear filtering and that the physical observables should be invariant under the group of similarity transformations. These observables are elements of the similarity jet spanned by natural coordinates and differential energies read out by a vision system.Furthermore, linear scale-space theory is extended to spatio-temporal images on bounded and curved domains. Our theory permits a delay-operation at the present moment which is in agreement with the motion detection model of Reichardt. In this respect our theory deviates from that of Koenderink which requires additional syntactical operators to realise such a delay-operation.Finally, the semi-discrete and discrete linear scale-space theories are derived by discretising the continuous theories following the theory of stochastic processes. The relation and difference between our stochastic approach and that of Lindeberg is pointed out. The connection between continuous and (semi-)discrete sale-space theory for infinitely high scales observed by Lindeberg is refined by applying appropriate scaling limits. It is shown that Lindeberg's requirement of normalisation for one-dimensional discrete Green's functions can be incorporated into our theory for arbitrary dimensional discrete Green's functions, parameter determination can be avoided, and the requirement of operation at even and odd coordinates sum can be guaranteed simultaneously by taking a normalised linear combination of the identity operator and the first step discrete Green's functions. The new discrete Green's functions are still intimately related to the continuous Green's functions and appear to coincide with pyramidal discrete Green's functions

    Differential and integral geometry of linear scale-spaces

    No full text
    Linear scale-space theory provides a useful framework to quantify the differential and integral geometry of spatio-temporal input images. In this paper that geometry comes about by constructing connections on the basis of the similarity jets of the linear scale-spaces and by deriving related systems of Cartan structure equations. A linear scale-space is generated by convolving an input image with Green's functions that are consistent with an appropriate Cauchy problem. The similarity jet consists of those geometric objects of the linear scale-space that are invariant under the similarity group. The constructed connection is assumed to be invariant under the group of Euclidean movements as well as under the similarity group. This connection subsequently determines a system of Cartan structure equations specifying a torsion two-form, a curvature two-form and Bianchi identities. The connection and the covariant derivatives of the curvature and torsion tensor then completely describe a particular local differential geometry of a similarity jet. The integral geometry obtained on the basis of the chosen connection is quantified by the affine translation vector and the affine rotation vectors, which are intimately related to the torsion two-form and the curvature two-form, respectively. Furthermore, conservation laws for these vectors form integral versions of the Bianchi identities. Close relations between these differential geometric identities and integral geometric conservation laws encountered in defect theory and gauge field theories are pointed out. Examples of differential and integral geometries of similarity jets of spatio-temporal input images are treated extensively

    Affine and projective differential geometric invariants of space curves

    No full text
    A space curve, e.g., a parabolic line on a 2-dimensional surface in 3-dimensional Euclidean space, induces a plane curve under projective mapping. But 2-dimensional scalar input images of such an object are, normally, spatio-temporal slices through a luminance field caused by the interaction of an external field and that object. Consequently, the question arises how to obtain from those input images a consistent description of the space curve under projective transformations. By means of classical scale space theory, algebraic invariance theory, and classical differential geometry a new method of shape description for space curves from one or multiple views is proposed in terms of complete and irreducible sets of affine and projective differential geometric invariants. The method is based on defining implicitly connections for the observed curves that are highly correlated to the projected space curves. These projected curves are assumed to reveal themselves as coherent structures in the scale space representation of the differential structure of the input images. Several applications to stereo, optic flow, texture analysis, and image matching are briefly indicated

    Topological numbers and singularities in scalar images. Scale-space evolution properties

    No full text
    Singular points of scalar images in any dimensions are classified by a topological number. This number takes integer values and can efficiently be computed as a surface integral on any closed hypersurface surrounding a given point. A nonzero value of the topological number indicates that in the corresponding point the gradient field vanishes, so the point is singular. The value of the topological number classifies the singularity and extends the notion of local minima and maxima in one-dimensional signals to the higher dimensional scalar images. Topological numbers are preserved along the drift of nondegenerate singular points induced by any smooth image deformation. When interactions such as annihilations, creations or scatter of singular points occurs upon a smooth image deformation, the total topological number remains the same.Our analysis based on an integral method and thus is a nonperturbative extension of the order-by-order approach using sets of differential invariants for studying singular points.Examples of typical singularities in one- and two-dimensional images are presented and their evolution induced by isotropic linear diffusion of the image is studied.Keywords: singular points - scalar images - topology - catastrophes - scale spac

    Topological numbers and singularities in scalar images. Scale-space evolution properties

    No full text
    Singular points of scalar images in any dimensions are classified by a topological number. This number takes integer values and can efficiently be computed as a surface integral on any closed hypersurface surrounding a given point. A nonzero value of the topological number indicates that in the corresponding point the gradient field vanishes, so the point is singular. The value of the topological number classifies the singularity and extends the notion of local minima and maxima in one-dimensional signals to the higher dimensional scalar images. Topological numbers are preserved along the drift of nondegenerate singular points induced by any smooth image deformation. When interactions such as annihilations, creations or scatter of singular points occurs upon a smooth image deformation, the total topological number remains the same.Our analysis based on an integral method and thus is a nonperturbative extension of the order-by-order approach using sets of differential invariants for studying singular points.Examples of typical singularities in one- and two-dimensional images are presented and their evolution induced by isotropic linear diffusion of the image is studied.Keywords: singular points - scalar images - topology - catastrophes - scale spac

    Digital Rights Management in Information Publishing

    Get PDF
    corecore